A Unifying Framework for Convergence Analysis of Approximate Newton Methods

نویسندگان

  • Haishan Ye
  • Luo Luo
  • Zhihua Zhang
چکیده

Many machine learning models are reformulated as optimization problems. Thus, it is important to solve a large-scale optimization problem in big data applications. Recently, subsampled Newton methods have emerged to attract much attention for optimization due to their efficiency at each iteration, rectified a weakness in the ordinary Newton method of suffering a high cost in each iteration while commanding a high convergence rate. Other efficient stochastic second order methods are also proposed. However, the convergence properties of these methods are still not well understood. There are also several important gaps between the current convergence theory and the performance in real applications. In this paper, we aim to fill these gaps. We propose a unifying framework to analyze local convergence properties of second order methods. Based on this framework, our theoretical analysis matches the performance in real applications.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximate Newton Methods and Their Local Convergence

Many machine learning models are reformulated as optimization problems. Thus, it is important to solve a large-scale optimization problem in big data applications. Recently, stochastic second order methods have emerged to attract much attention for optimization due to their efficiency at each iteration, rectified a weakness in the ordinary Newton method of suffering a high cost in each iteratio...

متن کامل

SPLINE COLLOCATION FOR NONLINEAR FREDHOLM INTEGRAL EQUATIONS

The collocation method based on cubic B-spline, is developed to approximate the solution of second kind nonlinear Fredholm integral equations. First of all, we collocate the solution by B-spline collocation method then the Newton-Cotes formula use to approximate the integrand. Convergence analysis has been investigated and proved that the quadrature rule is third order convergent. The presented...

متن کامل

Approximate Newton Methods for Policy Search in Markov Decision Processes

Approximate Newton methods are standard optimization tools which aim to maintain the benefits of Newton’s method, such as a fast rate of convergence, while alleviating its drawbacks, such as computationally expensive calculation or estimation of the inverse Hessian. In this work we investigate approximate Newton methods for policy optimization in Markov decision processes (MDPs). We first analy...

متن کامل

Convergence of Numerical Method For the Solution of Nonlinear Delay Volterra Integral ‎Equations‎

‎‎In this paper, Solvability nonlinear Volterra integral equations with general vanishing delays is stated. So far sinc methods for approximating the solutions of Volterra integral equations have received considerable attention mainly due to their high accuracy. These approximations converge rapidly to the exact solutions as number sinc points increases. Here the numerical solution of nonlinear...

متن کامل

A Gauss-Newton Method for Markov Decision Processes

Approximate Newton methods are a standard optimization tool which aim to maintain the benefits of Newton’s method, such as a fast rate of convergence, whilst alleviating its drawbacks, such as computationally expensive calculation or estimation of the inverse Hessian. In this work we investigate approximate Newton methods for policy optimization in Markov decision processes (MDPs). We first ana...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1702.08124  شماره 

صفحات  -

تاریخ انتشار 2017